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Abstract In this paper we investigate the connection between (i) closed Newton–
Cotes formulae, (ii) trigonometrically-fitted differential methods, (iii) symplectic
integrators and (iv) efficient solution of the Schrödinger equation. In the last decades
several one step symplectic integrators have been produced based on symplectic
geometry, (see the relevant literature and the references here). However, the study
of multistep symplectic integrators is very poor. In this paper we investigate the
closed Newton–Cotes formulae and we write them as symplectic multilayer struc-
tures. We also develop trigonometrically-fitted symplectic methods which are based
on the closed Newton–Cotes formulae. We apply the symplectic schemes to the well
known radial Schrödinger equation in order to investigate the efficiency of the pro-
posed method to these type of problems.
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1 Introduction

The research area of construction of numerical integration methods for ordinary dif-
ferential equations that preserve qualitative properties of the analytic solution is of
great interest. In this paper we consider Hamilton’s equations of motion which are
linear in position p and monentum q

q̇ = m p

ṗ = −m q (1)

where m is a constant scalar or matrix. The Eq. 1 is a an important one in the field of
molecular dynamics. It is necessary to use symplectic integrators in order to preserve
the characteristics of the Hamiltonian system in the numerical approximation. In the
recent years work has been done mainly in the production of one step symplectic
integrators (see [1]). Zhu et al. [2] has studied the symplectic integrators and the well
known open Newton–Cotes differential methods and as a result has presented the
open Newton–Cotes differential methods as multilayer symplectic integrators. The
construction of multistep symplectic integrators based on the open Newton–Cotes
integration methods was investigated by Chiou and Wu [3].

The last decades much work has been done on exponential—trigonometrically
fitting and the numerical solution of periodic initial value problems (see [4–85] and
references therein).

In this paper:

– We try to present closed Newton–Cotes differential methods as multilayer symplec-
tic integrators

– We apply the closed Newton–Cotes methods on the Hamiltonian system (1) and we
obtain the result that the Hamiltonian energy of the system remains almost constant
as the integration proceeds

– The trigonometrically-fitted methods are developed

We note that the aim of this paper is to generate methods that can be used for
non-linear differential equations as well as linear ones.

In Sect. 2 the results about symplectic matrices and schemes are presented. In
Sect. 3 closed Newton–Cotes integral rules and differential methods are described and
the new trigonometrically-fitted methods are developed. In Sect. 4 the conversion of
the closed Newton–Cotes differential methods into multilayer symplectic structures
is presented. Numerical results are presented in Sect. 5.

2 Basic theory on symplectic schemes and numerical methods

Zhu et al. [2] have developed a theory on symplectic numerical schemes and symplectic
matrices in which the following basic theory is based. The proposed methods can be
used for non-linear differential equations as well as linear ones.
Dividing an interval [a, b] with N points we have

x0 = a, xn = x0 + nh = b, n = 1, 2, . . . , N. (2)
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We note that x is the independent variable and a and b in the equation for x0 (Eq. 2)
are different than the a and b in Eq. 3.

The above division leads to the following discrete scheme:

(
pn+1
qn+1

)
= Mn+1

(
pn

qn

)
, Mn+1 =

(
an+1 bn+1
cn+1 dn+1

)
(3)

Based on the above we can write the n-step approximation to the solution as:

(
pn

qn

)
=

(
an bn

cn dn

) (
an−1 bn−1
cn−1 dn−1

)
. . .

(
a1 b1
c1 d1

) (
p0
q0

)

= Mn Mn−1 . . . M1

(
p0
q0

)

Defining

S = Mn Mn−1 . . . M1 =
(

An Bn

Cn Dn

)

the discrete transformation can be written as:

(
pn

qn

)
= S

(
p0
q0

)

A discrete scheme (3) is a symplectic scheme if the transformation matrix S is sym-
plectic.
A matrix A is symplectic if AT JA = J where

J =
(

0 1
−1 0

)

The product of symplectic matrices is also symplectic. Hence, if each matrix Mn

is symplectic the transformation matrix S is symplectic. Consequently, the discrete
scheme (2) is symplectic if each matrix Mn is symplectic.

3 Trigonometrically-fitted closed Newton–Cotes differential methods

3.1 General closed Newton–Cotes formulae

The closed Newton–Cotes integral rules are given by:

∫ b

a

f (x)dx ≈ z h

k∑
i=0

tif (xi)
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Table 1 Closed Newton–Cotes integral rules

k z t0 t1 t2 t3 t4

0 1 1
1 1/2 1 1
2 1/3 1 4 1
3 3/8 1 3 3 1
4 2/45 7 32 12 32 7
5 5/288 19 75 50 50 75 19
6 1/140 41 216 27 272 27 216 41

where

h = b − a

N
, xi = a + ih, i = 0, 1, 2, . . . , N

The coefficient z as well as the weights ti are given in the following table (Table 1).
From the above table it is easy to see that the coefficients ti are symmetric i.e. we

have the following relation:

ti = tk−i , i = 0, 1, . . . ,
k

2

Closed Newton–Cotes differential methods were produced from the integral rules. For
the above table we have the following differential methods:

k = 1 yn+1 − yn = h
2 (fn+1 + fn)

k = 2 yn+1 − yn−1 = h
3 (fn−1 + 4fn + fn+1)

k = 3 yn+1 − yn−2 = 3h
8 (fn−2 + 3fn−1 + 3fn + fn+1)

k = 4 yn+2 − yn−2 = 2h
45 (7fn−2 + 32fn−1 + 12fn + 32fn+1 + 7fn+1)

k = 5 yn+2 − yn−3 = 5h
288 (19fn−3 + 75fn−2 + 50fn−1 + 50fn

+ 75fn+1 + 19fn+2)

k = 6 yn+3 − yn−3 = h
140 (41fn−3 + 216fn−2 + 27fn−1 + 272fn

+ 27fn+1 + 216fn+2 + 41fn+3)

In the present paper we will investigate the case k = 6 and we will produce
trigonometrically-fitted differential methods of order 2.
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3.2 Trigonometrically-fitted closed Newton–Cotes differential method

Requiring the differential scheme:

yn+3 − yn−3 = h
(
a0 fn−3 + a1 fn−2 + a2 fn−1 + a3 fn

+ a4 fn+1 + a5 fn+2 + a6 fn+3

)
(4)

to be accurate for the following set of functions (we note that fi=y′
i , i=n−1, n, n+1):

{1, x, x2, x3, cos(±wx), sin(±wx), x cos(±wx), x sin(±wx)} (5)

the following set of equations is obtained:

a0 + a1 + a2 + a3 + a4 + a5 + a6 = 6

−6 a0 − 4 a1 − 2 a2 + 2 a4 + 4 a5 + 6 a6 = 0

27 a0 + 12 a1 + 3 a2 + 3 a4 + 12 a5 + 27 a6 = 54

v h sin(v h)(−a0 + a2 − a4 + a6 + 2 a1 cos(v h)

− 2 a5 cos(v h) − 4 a6 cos(v h)2 + 4 a0 cos(v h)2) = 0

2 sin(v h) (−1 + 4 cos(v h)2) = v h(−a1 + a3 − a5 + 4 a0 cos(v h)3

+ 2 a1 cos(v h)2 − 3 cos(v h) a0 − 3 a6 cos(v h) + a4 cos(v h)

+ a2 cos(v h) + 4 a6 cos(v h)3 + 2 a5 cos(v h)2)

6 cos(v h) h (−3 + 4 cos(v h)2) = h(4 a6 cos(v h)3 − a1 + a3 − a5

+ 2 a1 cos(v h)2 − 3 cos(v h) a0 + 2 a5 cos(v h)2 − 3 a6 cos(v h)

− 4 cos(v h) h a1 v sin(v h) − 4 cos(v h) h a5 v sin(v h)

− 2 cos(v h) a5 v x sin(v h) + 2 cos(v h) a1 v x sin(v h) + a2 cos(v h)

− 12 sin(v h) h a0 v cos(v h)2 + a4 cos(v h) + 4 a0 cos(v h)3

+ 3 sin(v h) h a0 v − sin(v h) a0 v x + sin(v h) a2 v x − sin(v h) h a2 v

− sin(v h) a4 v x + sin(v h) a6 v x + 3 sin(v h) h a6 v

− sin(v h) h a4 v + 4 sin(v h) a0 v x cos(v h)2

− 4 sin(v h) a6 v x cos(v h)2 − 12 sin(v h) h a6 v cos(v h)2)

2 sin(v h) x (−1 + 4 cos(v h)2) = h(sin(v h) a0

− sin(v h) a2 − 9 h a6 v cos(v h) + a4 v x cos(v h)

+ cos(v h) h a4 v + 2 a1 v x cos(v h)2 + 9 cos(v h) h a0 v

+ cos(v h) a2 v x + 2 a5 v x cos(v h)2 − 3 cos(v h) a6 v x

+ 4 h a5 v cos(v h)2 − 4 h a1 v cos(v h)2 − h a2 v cos(v h)

− 3 cos(v h) a0 v x − 4 sin(v h) a0 cos(v h)2 + 4 sin(v h) a6 cos(v h)2

+ 12 h a6 v cos(v h)3 − sin(v h) a6 + sin(v h) a4
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− 2 cos(v h) a1 sin(v h) + 4 a6 v x cos(v h)3 + 2 cos(v h) a5 sin(v h)

+ a3 x v − a1 v x − a5 v x − 2 h a5 v + 2 h a1 v

− 12 h a0 v cos(v h)3 + 4 a0 v x cos(v h)3) (6)

where v = w h. We note that the first, second and third equations are produced
requiring the scheme (4) to be accurate for xj , j = 0(1)3, while the fourth, fifth,
sixth and seventh equations are obtained requiring the algorithm (4) to be accurate
for cos(±vx), sin(±vx), x cos(±vx), x sin(±vx). The requirement for the accurate
integration of functions (5), helps the method to be accurate for all the problems with
solution which has behavior of trigonometric functions.

Solving the above system of equations we obtain:

a0 = (v cos(4 v) + 5 v cos(2 v) − sin(4 v) − sin(2 v)

− 6 v cos(3 v) + 2 sin(3 v) − 9 v2 sin(2 v) + 6 v2 sin(v))/denom

a1 = (sin(5 v) − 6 sin(3 v) + sin(v) + 18 v cos(3 v)

− 6 v cos(v) + 2 sin(4 v) + 2 sin(2 v)

− 12 v cos(2 v) + 18 v2 sin(3 v) + 18 v2 sin(v))/denom

a2 = (−4 sin(5 v) + 6 sin(3 v) − 4 sin(v)

− 9 v cos(4 v) + 3 v cos(2 v) − 18 v cos(3 v)

+ 24 v cos(v) + sin(4 v) + sin(2 v)

− 9 v2 sin(4 v) − 45 v2 sin(2 v) − 18 v2 sin(3 v))/denom

a3 = (6 sin(5 v) − 4 sin(3 v) + 6 sin(v) + 16 v cos(4 v)

+ 8 v cos(2 v) − 4 sin(4 v) − 4 sin(2 v)

+ 12 v2 sin(4 v) + 24 v2 sin(2 v) + 12 v cos(3 v)

− 36 v cos(v) + 36 v2 sin(3 v) + 36 v2 sin(v))/denom

a4 = a2, a5 = a1, a6 = a0 (7)

where denom = −v2 sin(4 v) − 14 v2 sin(2 v) + 6 v2 sin(3 v) + 14 v2 sin(v).
For small values of v the above formulae are subject to heavy cancellations. In this

case the following Taylor series expansions must be used.

a0 = 41

140
+ 9

700
v2 + 3

3850
v4 + 577

10510500
v6

+ 191

42042000
v8 + 431

1021020000
v10 + 852437

20532303792000
v12

+ 2479369

594356162400000
v14 + . . .
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a1 = 54

35
− 27

350
v2 + 27

15400
v4 − 2341

14014000
v6

− 83

8624000
v8 − 17247

19059040000
v10 − 4663753

54752810112000
v12

− 19482877

2316465043200000
v14 + . . .

a2 = 27

140
+ 27

140
v2 − 27

1925
v4 + 61

350350
v6

− 67

28028000
v8 − 171

952952000
v10 − 450869

13688202528000
v12

− 5874133

1505702278080000
v14 + . . .

a3 = 68

35
− 9

35
v2 + 177

7700
v4 − 521

4204200
v6

+ 359

24024000
v8 + 7573

5717712000
v10 + 12582191

82129215168000
v12

+ 147083219

9034213668480000
v14 (8)

The Local Truncation Error for the above differential method is given by:

L.T .E(h) = − 9 h9

1400

(
y(9)
n + 2 w2 y(7)

n + w4 y(5)
n

)
(9)

The L.T .E. is obtained expanding the terms yn±j and fn±j , j = 1(1)3 in (4) into
Taylor series expansions and substituting the Taylor series expansions of the coeffi-
cients of the method.

4 Closed Newton–Cotes can be expressed as symplectic integrators

Theorem 1 A discrete scheme of the form

(
b −a

a b

)(
qn+1
pn+1

)
=

(
b a

−a b

) (
qn

pn

)
(10)

is symplectic.

Proof We rewrite (3) as

(
qn+1
pn+1

)
=

(
b −a

a b

)−1 (
b a

−a b

) (
qn

pn

)

Define

M =
(

b −a

a b

)−1 (
b a

−a b

)
= 1

b2 + a2

(
b2 − a2 2ab

−2ab b2 − a2

)
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and it can easily be verified that

MT JM = J

thus the matrix M is symplectic. �
In Zhu et al. [2] have proved the symplectic structure of the well-known second-

order differential scheme (SOD),

yn+1 − yn−1 = 2hfn

yn+2 − yn−2 = 4hfn

yn+3 − yn−3 = 6hfn (11)

The above methods have been produced by the simplest open Newton–Cotes inte-
gral formula.

Based on the paper Chiou and Wu [3] the closed Newton–Cotes differential schemes
will be written as multilayer symplectic structures.

Application of the Newton–Cotes differential formula for n = 3 to the linear
Hamiltonian system (1) gives

qn+3 − qn−3 = s (a0 pn−3 + a1 pn−2 + a2 pn−1 + a3 pn

+ a4 pn+1 + a5 pn+2 + a6 pn+3)

pn+3 − pn−3 = −s (a0 qn−3 + a1 qn−2 + a2 qn−1 + a3 qn

+ a4 qn+1 + a5 qn+2 + a6 qn+3) (12)

where s = m h, where m is defined in (1).
From (11) we have that:

qn+3 − qn−3 = 6 s pn

pn+3 − pn−3 = −6 s qn (13)

qn+2 − qn−2 = 4 s pn

pn+2 − pn−2 = −4 s qn (14)

qn+1 − qn−1 = 2 s pn

pn+1 − pn−1 = −2 s qn (15)

qn+ 3
2

− qn− 3
2

= 3 s pn

pn+ 3
2

− pn− 3
2

= −3 s qn (16)
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qn+ 1
2

− qn− 1
2

= s pn

pn+ 1
2

− pn− 1
2

= −s qn (17)

Considering the approximation based on the first formula of (17) for (n + 1)-step
gives (taking into account the second formula of (17)):

qn+1 + qn−1 =
(
qn + s pn+ 1

2

)
+

(
qn − s pn− 1

2

)

= 2 qn + s
(
pn+ 1

2
− pn− 1

2

)
=

(
2 − s2

)
qn (18)

Similarly we have:

pn+1 + pn−1 =
(
pn − s qn+ 1

2

)
+

(
pn + s qn− 1

2

)

= 2 pn − s
(
qn+ 1

2
− qn− 1

2

)
=

(
2 − s2

)
pn (19)

Considering the approximation based on the first formula of (17) for (n + 2)-step
gives (taking into account the second formula of (16) and (19)):

qn+2 + qn−2 =
(
qn+1 + s pn+ 3

2

)
+

(
qn−1 − s pn− 3

2

)

= qn+1 + qn−1 + s
(
pn+ 3

2
− pn− 3

2

)

=
(

2 − s2
)

qn − 3 s2 qn = 2
(

1 − 2 s2
)

qn (20)

Similarly we have:

pn+2 + pn−2 =
(
pn+1 − s qn+ 3

2

)
+

(
pn−1 + s qn− 3

2

)

= pn+1 + pn−1 − s
(
qn+ 3

2
− qn− 3

2

)

=
(

2 − s2
)

pn − 3 s2 pn = 2
(

1 − 2 s2
)

pn (21)

Substituting (18–21) into (12) and considering that a0 = a6, a1 = a5 and a2 = a4
we have:

qn+3 − qn−3 = s
[
a0 (pn−3 + pn+3) +

(
2 a1

(
1 − 2 s2

)
+ a2

(
2 − s2

)
+ a3

)
pn

]

pn+3 − pn−3 = s
[
a0 (qn−3 + qn+3) +

(
2 a1

(
1 − 2 s2

)
+ a2

(
2 − s2

)
+ a3

)
qn

]
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and with (13) we have

qn+3 − qn−3 = s
[
a0 (pn−3 + pn+3) +

(
2 a1

(
1 − 2 s2

)

+ a2

(
2 − s2

)
+ a3

) qn+3 − qn−3

6 s

]

pn+3 − pn−3 = s
[
a0 (qn−3 + qn+3) +

(
2 a1

(
1 − 2 s2

)

+ a2

(
2 − s2

)
+ a3

) [
−pn+3 − pn−3

6 s

]]

which gives:

(qn+3 − qn−3)

[
1 − 2 a1

(
1 − 2 s2

) + a2
(
2 − s2

) + a3

6

]
= s a0 (pn−3 + pn+3)

(pn+3 − pn−3)

[
1 − 2 a1

(
1 − 2 s2

) + a2
(
2 − s2

) + a3

6

]
= −s a0 (qn+3 + qn−3)

The above formula in matrix form can be written as:

(
T (s) −s a0
s a0 T (s)

) (
qn+3
pn+3

)
=

(
T (s) s a0

−s a0 T (s)

)(
qn−3
pn−3

)

where

T (s) = 1 − 2 a1
(
1 − 2 s2

) + a2
(
2 − s2

) + a3

6
(22)

which is a discrete scheme of the form (10) and hence it is symplectic. ��
Remark 1 Chiou and Wu in [3] have re-written open Newton–Cotes differential
schemes as multilayer symplectic structures based on (11).

5 Numerical example

In this section we present some numerical results to illustrate the performance of our
new methods. Consider the numerical integration of the Schrödinger equation:

y′′(x) = [l(l + 1)/x2 + V (x) − k2]y(x). (23)

using the well-known Woods–Saxon potential (see [2,4–6,8]) which is given by

V (x) = Vw(x) = u0

(1 + z)
− u0z

[a(1 + z)2] (24)
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The Woods-Saxon Potential

864

Fig. 1 The Woods–Saxon potential

with z = exp[(x − R0)/a], u0 = −50, a = 0.6 and R0 = 7.0. In Fig. 1 we give a
graph of this potential. In the case of negative eigenenergies (i.e. when E ∈ [−50, 0])
we have the well-known bound-states problem while in the case of positive eigenen-
ergies (i.e. when E ∈ (0, 1000]) we have the well-known resonance problem (see
[4,5,14]).

Many problems in chemistry, physics, physical chemistry, chemical physics, elec-
tronics etc., are expressed by Eq. 23 (see [86–89]).

5.1 Resonance problem

In the asymptotic region the Eq. 23 effectively reduces to

y′′(x) +
(

k2 − l(l + 1)

x2

)
y(x) = 0, (25)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of Eq. 1 has the asymptotic form (when x → ∞)

y(x) � Akxjl(kx) − Bnl(kx)

� D[sin(kx − πl/2) + tan δl cos(kx − πl/2)] (26)

where δl is the phase shift which may be calculated from the formula

tan δl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)
(27)
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for x1 and x2 distinct points on the asymptotic region (for which we have that x1 is the
right hand end point of the interval of integration and x2 = x1 − h, h is the stepsize)
with S(x) = kxjl(kx) and C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0 and yi, i =
1(1)5 before starting a six-step method. From the initial condition, y0 = 0. The value
yi, i = 1(1)5 are computed using the high order Runge–Kutta method of Prince and
Dormand [80,81]. With these starting values we evaluate at x1 of the asymptotic region
the phase shift δl from the above relation.

5.1.1 The Woods–Saxon potential

As a test for the accuracy of our methods we consider the numerical integration of
the Schrödinger equation (23) with l = 0 in the well-known case where the potential
V (r) is the Woods–Saxon one (24).

One can investigate the problem considered here, following two procedures. The
first procedure consists of finding the phase shift δ(E) = δl for E ∈ [1, 1000]. The
second procedure consists of finding those E, for E ∈ [1, 1000], at which δ equals
π/2. In our case we follow the first procedure i.e. we try to find the phase shifts for
given energies. The obtained phase shift is then compared to the analytic value of π/2.

The above problem is the so-called resonance problem when the positive eigenen-
ergies lie under the potential barrier. We solve this problem, using the technique fully
described in [5].

The boundary conditions for this problem are:

y(0) = 0,

y(x) ∼ cos[√Ex] for large x.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration we use the following

methods:

– The well known Numerov’s method (which is indicated as Method A)
– The Explicit Numerov-Type Method developed by Chawla and Rao [77] (which is

indicated as Method B)
– The P-stable Exponentially Fitted Method developed by Kalogiratou and Simos

[85] (which is indicated as Method C)
– The four-step method developed by Henrici [90] (which is indicated as Method D)
– The Newton–Cotes Trigonometrically-Fitted Formula developed in [91] (which is

indicated as Method E)
– The new proposed method (which is indicated as Method F)

The numerical results obtained for the six methods, with several number of function
evaluations (NFE), were compared with the analytic solution of the Woods–Saxon
potential resonance problem, rounded to six decimal places. Figure 2 show the errors
Err = −log10|Ecalculated −Eanalytical | of the highest eigenenergy E3 = 989.701916
for several values of NFE, where NFE are the Number of Function Evaluations.
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Resonance Problem.  E=989.701916
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Fig. 2 Error Errmax for several values of n for the eigenvalue E3 = 989.701916. The nonexistence of a
value of Errmax indicates that for this value of n, Errmax is positive

6 Conclusions

In this paper a new approach for constructing efficient methods for the numerical
solution of the Schrödinger type equations is introduced.

From the numerical results we have the following remarks:

– The Explicit Numerov-Type Method developed by Chawla and Rao [77] has better
behavior than the well known Numerov’s method

– The P-stable Exponentially Fitted Method developed by Kalogiratou and Simos [85]
has better behavior than the explicit Numerov-type method with minimal phase-lag
of Chawla and Rao [77] for small number of function evaluations

– The four-step method developed by Henrici [90] has better behavior than all the
previous mentioned methods

– The Newton–Cotes Trigonometrically-Fitted Formula developed in [91] has better
behavior than all the above methods

– The new developed method is the most efficient

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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